SESTSUIPSE

AN LY
e Sho

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

topics

* DAG
* topological sort
 Strongly connected components

DAG

* Directed Acyclic Graph

* Directed acyclic graphs are used in many applications to indicate
precedences among events

topological sort

* A topological sort of a dag G =(V, E) is a linear ordering of all its
vertices such that if G contains an edge (u, v), then u appears before v
in the ordering.

» ordering of its vertices along a horizontal line so that all directed edges go
from left to right

* If the graph is not acyclic, then no linear ordering is possible.

17/18

(andershorts)->(pants) >{shocs) Ghi) =Tiell) i) (ke

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finishing times f [v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

* We can perform a topological sort in time ®(V + E), since depth-
first search takes ®(V + E) time and it takes O(1) time to insert
each of the |V | vertices onto the front of the linked list

Lemma 22.11

* A directed graph G is acyclic if and only if a depth-first search of G
yields no back edges

Theorem 22.12

* TOPOLOGICAL-SORT(G) produces a topological sort of a directed
acyclic graph G.

Decomposing a directed graph

e a classic application of depth-first search:
* decomposing a directed graph into its strongly connected components.

* Do this decomposition using two depth-first searches

* Many algorithms that work with directed graphs begin with such a
decomposition. After decomposition, the algorithm is run separately
on each strongly connected component. The solutions are then
combined according to the structure of connections between
components

Strongly connected components

* A strongly connected component of a directed graph ¢ = (V,E)isa
maximal set of vertices C € VI such that for every pair of vertices u
andvin C, we have bothu ~» vandv ~ wu; thatis, vertices u and
v are reachable from each other

idea

* The algorithm uses the transpose of G,
« GT =(VET) where ET={(u, v) : (v, u) € E}.
* The time to create GT is O(V + E).

* G and GT have exactly the same strongly connected components

STRONGLY-CONNECTED-COMPONENTS(G)

1 call DFS(G) to compute finishing times f [u] for each vertex u

2 compute GT

3 call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing f [u] (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strongly connected component

component graph G°¢¢ = (V>¢¢ ESCO)

* Suppose that G has strongly connected components C4, C5, ..., Ck

* The vertex set V°CC is {v,, v,,..., 7}, and it contains a vertex v; for

each strongly connected component C; of G

* There is an edge (v, v;) € E°“C if G contains a directed edge
(x,y) for some x € C;and somey € (;

e contracting all edges whose incident vertices are within the same strongly
connected component of G

the component graph is a dag

strongly connected components
+labeled with its discovery and finishing times

a b ¢ d

D—>C 11617105 (89

CDen EDNNED . E»

e f g h

17

the transpose of graph

18

The acyclic component graph G>¢¢
It is a dag

19

